
Quantum Money

Peter W. Shor

M.I.T., Cambridge, MA, U.S.A.

Joint work with:

Edward Farhi, David Gosset,

Avinatan Hassidim, Andrew Lutomirski

1

Outline:

• Background: Cryptography and Quantum Money

• What we did that didn’t work

• What we did that we think might work

2

Traditional cryptography is called symmetric cryptography, where

each pair of parties who want to communicate have a secret key,

shared in advance.

German World War II En

gima machine

The possibiity of doing cryptography (called *public key* cryp

tography) done without secret keys was raised by Ralph Merkle

in 1974.

3

Public Key Cryptography

The first convincing truly example was Diffie and Hellman’s key

exchange protocol.

This lets two parties agree on a secret key without any pre

existing secret knowledge.

This key can then be used for a symmetric cryptosystem, or as

a one-time pad.

The security of Diffie-Hellman depends on the difficulty of com

puting discrete logarithms.

4

Quantum Cryptography

Two of the first two quantum cryptographic protocols were

Wiesner’s protocol for quantum money, and the BB84 proto

col for key exchange.

Wiesner’s protocol for quantum money inspired BB84.

Both of these depend on the quantum no-cloning theorem.

5

One problem with money is that you can make copies.

Quantum states satisfy the no-cloning theorem, which says you

cannot make a copy of an unknown quantum state.

One might think this will immediately let us use quantum states

for money.

It’s actually quite a bit harder than it sounds, but we give a

proposal for creating unforgeable quantum states.

6

No Cloning Theorem (1982)

There is no quantum transformation taking |ψ) |0) to |ψ) |ψ) for
an unknown state |ψ).

Why not? This transformation isn’t unitary:

|φ) |0) would go to |φ) |φ).

But

α = (φ |ψ) (0 |0) > (φ |ψ) (φ |ψ) = α2

unless α = 0 or α = 1.

Thus, angles are not preserved, and the cloning transformation

is not unitary.

7

History of Quantum Money

In each bill, there is a sequence of quantum states in one of

Stephen Wiesner’s idea

for making quantum

money, (circa 1970,

published 1983).

two complementary bases (so one of | 1) , |↔) | ր ցւ) , | տ)). By the

quantum no-cloning theorem, anyone who does not know the

polarizations of these states cannot copy them.

8

How to check the money? The mint knows the polarizations,

and so can easily check it.

We want the merchant to be able to verify that the bill is legit

without sending it back to the mint.

If the merchant knows the quantization axis and eigenvalue of

each qubit, then the merchant can verify the money.

However, he could also make new bills exactly like the one he

got.

We would like a verification procedure that does not allow the

merchant to make fresh bills.

9

Cryptography Background and Motivation

For many years, cryptography was done with ad hoc cryptosys

tems, many of which were eventually broken.

Over the last few decades, cryptography has become much more

mathematical, and theoretical computer scientists try to prove

security of cryptosystems.

There are two kinds of proofs of security in cryptography: secu

rity through information and security through complexity.

10

Definitions

Informationally Secure Computationally Secure

BB84 key exchange, Diffie-Hellman key exchange,
one-time pad RSA cryptosystem

No matter how powerful a
The security of the crypto

computer an adversary has,
system relies on the

he will not be able to break
difficulty of solving some

the cryptosystem, because
computationally hard prob-

he doesn’t have access to
lem

enough information.

11

Disadvantages

Informationally Secure

Many problems cannot be

solved with informationally

secure cryptosystems. For

example, an information-

ally secure cryptosystem

for encryption of messages

requires a key as long as

the message. (This is

achieved by a one-time

pad.)

Computationally Secure

It is hard to prove any

thing about the security

of computationally secure

cryptosystems. For ex

ample, the only reason for

believing prime factoriza

tion is hard is that nobody

has been able to solve it

yet.

12

Quantum cryptography

The BB84 protocol for quantum key distribution can be proved

informationally secure, assuming the laws of quantum mechan

ics. This solves a task which is impossible to perform with an

informationally secure protocol and classical computing.

One genesis for this research was wondering whether there were

any tasks that a quantum computer might perform with compu

tational security, but which were impossible for a digital computer

to perform.

We believe we have identified one.

13

Task: Unforgeable States

We would like to make quantum states that

a) can be verified.

b) cannot be duplicated.

14

Task: Unforgeable States

That is, we would like one of the players in the protocol (we

will call her the mint) to be able to make a state |ψi), and a

verification protocol Pi, so that

a) |ψi) passes the test Pi.

b) The test Pi does not destroy |ψi).

c) a possible counterfeiter holding both the state |ψi) and know

ing the protocol Pi cannot produce a state of two quantum

systems (possibly entangled) that both pass the test Pi.

15

One-of-a-Kind States

In fact, in our protocol, we think that not even the mint can

efficiently make another copy of the state |ψi) that pases the

test Pi.

16

Uses for Unforgeable States: Quantum Money

The mint makes quantum states, and gets pairs |ψi), Pi.

The mint publishes a list of valid pairs i, Pi somewhere secure

(so nobody can add an extra pair to the list).

It then hands out some |ψi), together with i, to a customer who

wants quantum money.

Then anybody with |ψi) who knows i (and has a quantum com

puter) can check that it is a valid quantum money state; i.e.,

that i is on the list, and |ψi) passes the test Pi.

17

Uses for Unforgeable States: Quantum ID Cards

You could put a unforgeable quantum state into an ID card.

These ID cards could be stolen, but they could not be forged.

Of course, for both money and quantum ID cards, you need to

have long-lived quantum states.

18

You have to be careful.

For one of the potential protocols we looked at,

• A potential counterfeiter holding just |ψi) could not make a

copy of it (because of the no cloning theorem).

• Knowing just the verification protocol Pi, it appeared very

difficult to find a state that passed it.

• But both holding |ψi) and knowing Pi, a counterfeiter could

produce two copies of |ψi).

19

Failed Protocol

Creating the money:

1. Choose a random product state

|ψ) = |ψ1) ⊗ |ψ2) ⊗ |ψ3) ⊗ . . . ⊗ |ψn) .

where the |ψi) are uniform in Haar measure.

2. Choose Cn k-clauses (i.e., local Hamiltonians on k qubits)
such that |ψ) has zero energy for each of the clauses.

The quantum money state is |ψ) and the verification procedure

is checking that it indeed has zero energy on all the clauses.

20

How to Break the Failed Protocol

In breaking this protocol, we came up with a possible new algo

rithmic tool for quantum computing.

Theorem (Quantum State Restoration)

Given a Hamiltonian H, and a ground state |ψ) of H, one can

do tomography on (i.e., estimate properties of) a small num

ber of qubits of |ψ) and measure local properties of it without

destroying it.

Question: are there any algorithmic uses for state restoration

(besides breaking quantum money)?

21

How does our quantum money protocol work?

We will

1. Give a failed protocol based on graph isomorphism. This

helps motivate our current protocol.

2. Give our best current candidate for quantum money, created

by using the replacing graphs with diagrams of knots.

3. Discuss a general template for building quantum money pro

tocols.

22

Background on Graph Isomorphism

Two graphs are isomorphic if you can relabel the vertices of one

to obtain the other.

23

Quantum Computing on Graph Isomorphism

Suppose we could take a graph G and create the state

1 �
√ |π(G))

n! π∈Sn

Then we could solve graph isomorphism.

How? Given graphs G1 and G2, we prepare the state

1 � 1 �
√ |π(G1)) ⊗ √ |π(G2))
n! n!π∈Sn π∈Sn

If the graphs are isomorphic, these are equal. We test whether

the state is a +1 eigenstate of the SWAP operator.

24

Moral from Previous Slide

Creating the equal superpositions of a graph

1 �
√ |π(G))

n! π∈Sn

seems to be hard.

It turns out that for lattices, if you could create the equal super

position of points near vectors in a lattice

1 �
√ |w)

N w:|w−v|≤ǫ,v∈L

then you could find short vectors in the lattice. This is also a

problem believed to be hard classically.

25

Attempt using Graph Isomorphism

Now, consider the following algorithm.

The mint starts with the equal superposition of all graphs

1 �
|G) .

2n(n−1)/4
G

This is easy, because you can put each edge in a superposition

of present and absent.

The mint then measures some property of graphs which is in

variant under permutations of the vertices (e.g., the spectrum).

Suppose the spectrum is S. Then we are in the state

1 �
√ |G)
NS G:Spec(G)=S

26

�

�
 �

Testing this state

1
The quantum money is: |$S) = √

N

G:Spec(G)=S

|G)
 .

To test it, we check

1. that Spec(G) = S,

2. that the state is invariant under the relabeling of two of the

vertices.

Any state that passes these tests must be a superposition

G

αG

�

π

|π(G))
 =

G

αG |$G)

for some set of graphs G with Spec(G) = S.

27

Good News

We have the state:

1 �
|$S) = √ |G)

N
G:Spec(G)=S

One thing we could do is measure this state, to get a graph with

Spec(G) = S. But then we can’t create

1 �
|$G) = √ |πG)

n!
 π∈Sn

unless we can solve graph isomorphism.

28

Bad News

We can solve graph isomorphism for random graphs.

If constructing the isomorphism is easy for a graph G, we can

then create the state

1 �
|$G) = √ |πG)

n!
 π∈Sn

We can do this by creating the superposition over all permu

tations, applying the permutation, and then uncomputing the

permutation.

29

What to do now?

To use graph isomorphism for quantum money, we need to start

with an equal superposition just over hard graphs. We don’t

know how to do that.

The new idea: instead of graph isomorphism, use a similar prob

lem which doesn’t have the drawback that it is easy for an av

erage case.

Are there such problems?

We looked through a lot of candidates which didn’t work before

identifying what we think is a good one.

30

We propose using knots and knot invariants.

We have to vary the protocol somewhat to make them work.

31

Knots

Knot diagram are similar enough to labelings of graphs that we

can use them in our money scheme.

A knot diagram is a drawing of a knot in the plane.

If you have a knot, then there are many different diagrams that

represent the same knot. Testing whether two knots are given

by the same diagram is believed to be a hard problem.

32

A Trefoil Knot

33

Reidemester Moves

If you have two knot diagrams that do give the same knot, you

can move from one to the other using Reidemeister moves.

Our idea is thus to replace graph isomorphism with knot dia

grams, and relabelings of vertices with Reidemeister moves.

34

Knot Invariants

For our template, we need some function f mapping knot di

agrams into values that depend only on the knot and not the

diagram (analogous to the spectrum of G for our failed attempt

with graph isomorphism). These function are called knot invari

ants.

We need to choose one that is computable in polynomial time.

The Alexander polynomial is the best known of these, but there

are others. The Alexander polynomial maps a knot into a polyno

mial with integer coefficients. For the trefoil knot, it is t2− t +1.

35

�

The Broad Outline of Our Proposal

The mint starts with the superposition of all diagrams of knots.

It then measures the Alexander polynomial of these knots (or

another polynomial time computable knot invariant) to get

α |K)
p(t)
A(K)=p(t)

The verifier checks that the superposition given to him has the

correct Alexander polynomial, and that this superposition is in

variant under Reidemeister moves. If the state passes these two

tests, he accepts it as valid quantum money.

36

But Infinity ...

There are an infinite number of diagrams for the same knot.

Thus, we cannot use an equal superposition of all knot diagrams.

What we do is to take knot diagrams with between n1 and n2

crossings, and weight them with some probabilities pk that de

pend only on the number of crossings k, so that most of the

weight is at some k which is substantially less than n2. We

then have to generalize our quantum money template to work

for non-uniform distributions on objects.

This can be done by using the weighting from reversible Markov

chains.

37

Another Problem

Another difficulty we’ve introduced by replacing graphs with knot

diagrams is that it we need to create the uniform superposition

over all knot diagrams with a given number of crossings.

There don’t seem to be any simple algorithms for this.

We can fix this by using grid diagrams of knots.

Reidemeister moves get replaced by grid moves.

Instead of weighting by the number of crossings, we weight by

the size of the grid.

38

Grid Diagrams

For a grid diagram, you put 2n

points on an n × n grid, two in

each row and column. You con

nect the points in the same row

and column, where vertical lines

go over horizontal lines.

Grid diagrams have the advantage that it is really easy to gen

erate the superposition of all grid diagrams, and also fairly easy

to compute the Alexander polynomial of knots.

39

�
 �

How could you break this protocol? The obvious way is to map

N N

i=1

| i) →

i=1

|Gi)

where Gi is the ith grid diagram associated with some knot.

For this, you need an efficient 1-1 reversible mapping from i to

grid diagrams of a give size associated with a given knot.

Mathematicians don’t even know of an efficient algorithm to tell

whether two grid diagrams are associated with the same knot.

(However, they can do this in practice using knot invariants.)

40

A general template

Suppose we have a class of objects C; we have a small set of

permutations on these objects: π1, π2, . . ., πk; and we have a

function f so that f(πi(x)) = f(x) for x ∈ C.

Now, we create the uniform superposition over all objects x ∈ C,

and measure the invariant f . We then get the state

1 �
√ |x)

N

x:f(x)=k

for some random value of the invariant k.

41

How to test the money in this template

The verifier has a state purporting to be in the superposition

1 �
√ |x) .
Nk x:f(x)=k

He first measures to make sure that f(x) = k. He then applies

the permutations πi and sees whether the state changes. If it

does not, then it passes the test.

If the Markov chain obtained from the permutations πi is rapidly

mixing, then the quantum money state is essentially the only one

that passes the test.

42

Is this money safe?

We have a proof sketch that, if there is a scheme that will coun

terfeit this money for general objects x, functions f and permu

tations πi satisfying the above conditions, then you can use it to

solve graph isomorphism.

We would like to show that, if the functions πi and f are given

to you as oracles, then you cannot break such a money scheme

(and not use the assumption that graph isomorphism is hard).

43

Open Problems

Can we prove that our template (with a black-box set of objects

replacing knots and black-box transformations replacing Reide

meister moves) is indeed secure, without assuming that graph

isomorphism is hard?

Can we use the same template to produce other protocols for

quantum money?

Are there other ways to produce quantum money?

Scott Aaronson has a proposal to create quantum money from

polynomials that are invariant on subspaces of Zn
2.

44

